Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An AP2/ERF transcription factor ERF139 coordinates xylem cell expansion and secondary cell wall deposition.

Identifieur interne : 000B38 ( Main/Exploration ); précédent : 000B37; suivant : 000B39

An AP2/ERF transcription factor ERF139 coordinates xylem cell expansion and secondary cell wall deposition.

Auteurs : Bernard Wessels [Suède] ; Carolin Seyfferth [Suède] ; Sacha Escamez [Suède] ; Thomas Vain [Suède] ; Kamil Antos [Suède] ; Jorma Vahala [Finlande] ; Nicolas Delhomme [Suède] ; Jaakko Kangasj Rvi [Finlande] ; Michaela Eder [Allemagne] ; Judith Felten [Suède] ; Hannele Tuominen [Suède]

Source :

RBID : pubmed:31125440

Descripteurs français

English descriptors

Abstract

Differentiation of xylem elements involves cell expansion, secondary cell wall (SCW) deposition and programmed cell death. Transitions between these phases require strict spatiotemporal control. The function of Populus ERF139 (Potri.013G101100) in xylem differentiation was characterized in transgenic overexpression and dominant repressor lines of ERF139 in hybrid aspen (Populus tremula × tremuloides). Xylem properties, SCW chemistry and downstream targets were analyzed in both types of transgenic trees using microscopy techniques, Fourier transform-infrared spectroscopy, pyrolysis-GC/MS, wet chemistry methods and RNA sequencing. Opposite phenotypes were observed in the secondary xylem vessel sizes and SCW chemistry in the two different types of transgenic trees, supporting the function of ERF139 in suppressing the radial expansion of vessel elements and stimulating accumulation of guaiacyl-type lignin and possibly also xylan. Comparative transcriptomics identified genes related to SCW biosynthesis (LAC5, LBD15, MYB86) and salt and drought stress-responsive genes (ANAC002, ABA1) as potential direct targets of ERF139. The phenotypes of the transgenic trees and the stem expression profiles of ERF139 potential target genes support the role of ERF139 as a transcriptional regulator of xylem cell expansion and SCW formation, possibly in response to osmotic changes of the cells.

DOI: 10.1111/nph.15960
PubMed: 31125440


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An AP2/ERF transcription factor ERF139 coordinates xylem cell expansion and secondary cell wall deposition.</title>
<author>
<name sortKey="Wessels, Bernard" sort="Wessels, Bernard" uniqKey="Wessels B" first="Bernard" last="Wessels">Bernard Wessels</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187</wicri:regionArea>
<wicri:noRegion>SE-90187</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seyfferth, Carolin" sort="Seyfferth, Carolin" uniqKey="Seyfferth C" first="Carolin" last="Seyfferth">Carolin Seyfferth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187</wicri:regionArea>
<wicri:noRegion>SE-90187</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Escamez, Sacha" sort="Escamez, Sacha" uniqKey="Escamez S" first="Sacha" last="Escamez">Sacha Escamez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187</wicri:regionArea>
<wicri:noRegion>SE-90187</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vain, Thomas" sort="Vain, Thomas" uniqKey="Vain T" first="Thomas" last="Vain">Thomas Vain</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183</wicri:regionArea>
<wicri:noRegion>SE-90183</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Antos, Kamil" sort="Antos, Kamil" uniqKey="Antos K" first="Kamil" last="Antos">Kamil Antos</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Integrative Medical Biology, Umeå University, Umeå, SE-90187, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Integrative Medical Biology, Umeå University, Umeå, SE-90187</wicri:regionArea>
<wicri:noRegion>SE-90187</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vahala, Jorma" sort="Vahala, Jorma" uniqKey="Vahala J" first="Jorma" last="Vahala">Jorma Vahala</name>
<affiliation wicri:level="4">
<nlm:affiliation>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, VIPS, University of Helsinki, Viikinkaari 1 (POB65), Helsinki, FI-00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, VIPS, University of Helsinki, Viikinkaari 1 (POB65), Helsinki, FI-00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Delhomme, Nicolas" sort="Delhomme, Nicolas" uniqKey="Delhomme N" first="Nicolas" last="Delhomme">Nicolas Delhomme</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183</wicri:regionArea>
<wicri:noRegion>SE-90183</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kangasj Rvi, Jaakko" sort="Kangasj Rvi, Jaakko" uniqKey="Kangasj Rvi J" first="Jaakko" last="Kangasj Rvi">Jaakko Kangasj Rvi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, VIPS, University of Helsinki, Viikinkaari 1 (POB65), Helsinki, FI-00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, VIPS, University of Helsinki, Viikinkaari 1 (POB65), Helsinki, FI-00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Eder, Michaela" sort="Eder, Michaela" uniqKey="Eder M" first="Michaela" last="Eder">Michaela Eder</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, 14476, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, 14476</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Felten, Judith" sort="Felten, Judith" uniqKey="Felten J" first="Judith" last="Felten">Judith Felten</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183</wicri:regionArea>
<wicri:noRegion>SE-90183</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tuominen, Hannele" sort="Tuominen, Hannele" uniqKey="Tuominen H" first="Hannele" last="Tuominen">Hannele Tuominen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187</wicri:regionArea>
<wicri:noRegion>SE-90187</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31125440</idno>
<idno type="pmid">31125440</idno>
<idno type="doi">10.1111/nph.15960</idno>
<idno type="wicri:Area/Main/Corpus">000884</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000884</idno>
<idno type="wicri:Area/Main/Curation">000884</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000884</idno>
<idno type="wicri:Area/Main/Exploration">000884</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An AP2/ERF transcription factor ERF139 coordinates xylem cell expansion and secondary cell wall deposition.</title>
<author>
<name sortKey="Wessels, Bernard" sort="Wessels, Bernard" uniqKey="Wessels B" first="Bernard" last="Wessels">Bernard Wessels</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187</wicri:regionArea>
<wicri:noRegion>SE-90187</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seyfferth, Carolin" sort="Seyfferth, Carolin" uniqKey="Seyfferth C" first="Carolin" last="Seyfferth">Carolin Seyfferth</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187</wicri:regionArea>
<wicri:noRegion>SE-90187</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Escamez, Sacha" sort="Escamez, Sacha" uniqKey="Escamez S" first="Sacha" last="Escamez">Sacha Escamez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187</wicri:regionArea>
<wicri:noRegion>SE-90187</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vain, Thomas" sort="Vain, Thomas" uniqKey="Vain T" first="Thomas" last="Vain">Thomas Vain</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183</wicri:regionArea>
<wicri:noRegion>SE-90183</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Antos, Kamil" sort="Antos, Kamil" uniqKey="Antos K" first="Kamil" last="Antos">Kamil Antos</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Integrative Medical Biology, Umeå University, Umeå, SE-90187, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Integrative Medical Biology, Umeå University, Umeå, SE-90187</wicri:regionArea>
<wicri:noRegion>SE-90187</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vahala, Jorma" sort="Vahala, Jorma" uniqKey="Vahala J" first="Jorma" last="Vahala">Jorma Vahala</name>
<affiliation wicri:level="4">
<nlm:affiliation>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, VIPS, University of Helsinki, Viikinkaari 1 (POB65), Helsinki, FI-00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, VIPS, University of Helsinki, Viikinkaari 1 (POB65), Helsinki, FI-00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Delhomme, Nicolas" sort="Delhomme, Nicolas" uniqKey="Delhomme N" first="Nicolas" last="Delhomme">Nicolas Delhomme</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183</wicri:regionArea>
<wicri:noRegion>SE-90183</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kangasj Rvi, Jaakko" sort="Kangasj Rvi, Jaakko" uniqKey="Kangasj Rvi J" first="Jaakko" last="Kangasj Rvi">Jaakko Kangasj Rvi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, VIPS, University of Helsinki, Viikinkaari 1 (POB65), Helsinki, FI-00014, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, VIPS, University of Helsinki, Viikinkaari 1 (POB65), Helsinki, FI-00014</wicri:regionArea>
<orgName type="university">Université d'Helsinki</orgName>
<placeName>
<settlement type="city">Helsinki</settlement>
<region type="région" nuts="2">Uusimaa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Eder, Michaela" sort="Eder, Michaela" uniqKey="Eder M" first="Michaela" last="Eder">Michaela Eder</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, 14476, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, 14476</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Brandebourg</region>
<settlement type="city">Potsdam</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Felten, Judith" sort="Felten, Judith" uniqKey="Felten J" first="Judith" last="Felten">Judith Felten</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183</wicri:regionArea>
<wicri:noRegion>SE-90183</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tuominen, Hannele" sort="Tuominen, Hannele" uniqKey="Tuominen H" first="Hannele" last="Tuominen">Hannele Tuominen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187</wicri:regionArea>
<wicri:noRegion>SE-90187</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Wall (metabolism)</term>
<term>Ethylenes (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Lignin (metabolism)</term>
<term>Plant Cells (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (cytology)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Transcription Factor AP-2 (genetics)</term>
<term>Transcription Factor AP-2 (metabolism)</term>
<term>Wood (chemistry)</term>
<term>Wood (cytology)</term>
<term>X-Ray Diffraction (MeSH)</term>
<term>Xylem (cytology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bois (composition chimique)</term>
<term>Bois (cytologie)</term>
<term>Cellules végétales (métabolisme)</term>
<term>Diffraction des rayons X (MeSH)</term>
<term>Facteur de transcription AP-2 (génétique)</term>
<term>Facteur de transcription AP-2 (métabolisme)</term>
<term>Lignine (métabolisme)</term>
<term>Paroi cellulaire (métabolisme)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (cytologie)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
<term>Xylème (cytologie)</term>
<term>Éthylènes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
<term>Transcription Factor AP-2</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Ethylenes</term>
<term>Lignin</term>
<term>Plant Proteins</term>
<term>Transcription Factor AP-2</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Bois</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Bois</term>
<term>Populus</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Populus</term>
<term>Wood</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteur de transcription AP-2</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Wall</term>
<term>Plant Cells</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellules végétales</term>
<term>Facteur de transcription AP-2</term>
<term>Lignine</term>
<term>Paroi cellulaire</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Éthylènes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Plants, Genetically Modified</term>
<term>Signal Transduction</term>
<term>X-Ray Diffraction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Diffraction des rayons X</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Transduction du signal</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Differentiation of xylem elements involves cell expansion, secondary cell wall (SCW) deposition and programmed cell death. Transitions between these phases require strict spatiotemporal control. The function of Populus ERF139 (Potri.013G101100) in xylem differentiation was characterized in transgenic overexpression and dominant repressor lines of ERF139 in hybrid aspen (Populus tremula × tremuloides). Xylem properties, SCW chemistry and downstream targets were analyzed in both types of transgenic trees using microscopy techniques, Fourier transform-infrared spectroscopy, pyrolysis-GC/MS, wet chemistry methods and RNA sequencing. Opposite phenotypes were observed in the secondary xylem vessel sizes and SCW chemistry in the two different types of transgenic trees, supporting the function of ERF139 in suppressing the radial expansion of vessel elements and stimulating accumulation of guaiacyl-type lignin and possibly also xylan. Comparative transcriptomics identified genes related to SCW biosynthesis (LAC5, LBD15, MYB86) and salt and drought stress-responsive genes (ANAC002, ABA1) as potential direct targets of ERF139. The phenotypes of the transgenic trees and the stem expression profiles of ERF139 potential target genes support the role of ERF139 as a transcriptional regulator of xylem cell expansion and SCW formation, possibly in response to osmotic changes of the cells.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31125440</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>224</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2019</Year>
<Month>12</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>An AP2/ERF transcription factor ERF139 coordinates xylem cell expansion and secondary cell wall deposition.</ArticleTitle>
<Pagination>
<MedlinePgn>1585-1599</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.15960</ELocationID>
<Abstract>
<AbstractText>Differentiation of xylem elements involves cell expansion, secondary cell wall (SCW) deposition and programmed cell death. Transitions between these phases require strict spatiotemporal control. The function of Populus ERF139 (Potri.013G101100) in xylem differentiation was characterized in transgenic overexpression and dominant repressor lines of ERF139 in hybrid aspen (Populus tremula × tremuloides). Xylem properties, SCW chemistry and downstream targets were analyzed in both types of transgenic trees using microscopy techniques, Fourier transform-infrared spectroscopy, pyrolysis-GC/MS, wet chemistry methods and RNA sequencing. Opposite phenotypes were observed in the secondary xylem vessel sizes and SCW chemistry in the two different types of transgenic trees, supporting the function of ERF139 in suppressing the radial expansion of vessel elements and stimulating accumulation of guaiacyl-type lignin and possibly also xylan. Comparative transcriptomics identified genes related to SCW biosynthesis (LAC5, LBD15, MYB86) and salt and drought stress-responsive genes (ANAC002, ABA1) as potential direct targets of ERF139. The phenotypes of the transgenic trees and the stem expression profiles of ERF139 potential target genes support the role of ERF139 as a transcriptional regulator of xylem cell expansion and SCW formation, possibly in response to osmotic changes of the cells.</AbstractText>
<CopyrightInformation>© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wessels</LastName>
<ForeName>Bernard</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">0000-0003-0717-1630</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Seyfferth</LastName>
<ForeName>Carolin</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0002-8962-3778</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Escamez</LastName>
<ForeName>Sacha</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0001-7049-6978</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vain</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">0000-0002-8153-907X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Antos</LastName>
<ForeName>Kamil</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Integrative Medical Biology, Umeå University, Umeå, SE-90187, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vahala</LastName>
<ForeName>Jorma</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, VIPS, University of Helsinki, Viikinkaari 1 (POB65), Helsinki, FI-00014, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Delhomme</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">0000-0002-3053-0796</Identifier>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kangasjärvi</LastName>
<ForeName>Jaakko</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0002-8959-1809</Identifier>
<AffiliationInfo>
<Affiliation>Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, VIPS, University of Helsinki, Viikinkaari 1 (POB65), Helsinki, FI-00014, Finland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Eder</LastName>
<ForeName>Michaela</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0002-1461-1668</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, 14476, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Felten</LastName>
<ForeName>Judith</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0002-0444-822X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tuominen</LastName>
<ForeName>Hannele</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">0000-0002-4949-3702</Identifier>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE-90187, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>07</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005030">Ethylenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050656">Transcription Factor AP-2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>91GW059KN7</RegistryNumber>
<NameOfSubstance UI="C036216">ethylene</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005030" MajorTopicYN="N">Ethylenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059828" MajorTopicYN="N">Plant Cells</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050656" MajorTopicYN="N">Transcription Factor AP-2</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014961" MajorTopicYN="N">X-Ray Diffraction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Populus</Keyword>
<Keyword MajorTopicYN="Y">cell expansion</Keyword>
<Keyword MajorTopicYN="Y">ethylene response factor (ERF)</Keyword>
<Keyword MajorTopicYN="Y">hybrid aspen</Keyword>
<Keyword MajorTopicYN="Y">lignin</Keyword>
<Keyword MajorTopicYN="Y">secondary growth</Keyword>
<Keyword MajorTopicYN="Y">xylem development</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>03</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>05</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31125440</ArticleId>
<ArticleId IdType="doi">10.1111/nph.15960</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Agarwal M, Hao Y, Kapoor A, Dong CH, Hiroaki F, Zheng X, Zhu JK. 2006. A R2R3-type MYB transcription factor is involved in the cold-regulation of CBF genes and in acquired freezing tolerance. Journal of Biological Chemistry 49: 37636-37645.</Citation>
</Reference>
<Reference>
<Citation>Ambavaram MM, Krishnan A, Trijatmiko KR, Pereira A. 2011. Coordinated activation of cellulose and repression of lignin biosynthesis pathways in rice. Plant Physiology 155: 916-931.</Citation>
</Reference>
<Reference>
<Citation>Anders S, Pyl PT, Huber W. 2015. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics 31: 166-169.</Citation>
</Reference>
<Reference>
<Citation>Andersson-Gunnerås S, Hellgren JM, Björklund S, Regan S, Moritz T, Sundberg B. 2003. Asymmetric expression of a poplar ACC oxidase controls ethylene production during gravitational induction of tension wood. The Plant Journal 34: 339-349.</Citation>
</Reference>
<Reference>
<Citation>Bailey TL. 2011. DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27: 1653-1659.</Citation>
</Reference>
<Reference>
<Citation>Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, Bris PL, Borrega N, Hervé J, Blondet E, Balzergue S et al. 2011. Disruption of LACCASE4 and 17 Results in Tissue-Specific Alterations to Lignification of Arabidopsis thaliana Stems. Plant Cell 23: 1124-1137.</Citation>
</Reference>
<Reference>
<Citation>Bylesjö M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J. 2006. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. Journal of Chemometrics 20: 341-351.</Citation>
</Reference>
<Reference>
<Citation>Campbell L, Etchells JP, Cooper M, Kumar M, Turner SR. 2018. An essential role for abscisic acid in the regulation of xylem fibre differentiation. Development 145: dev161992.</Citation>
</Reference>
<Reference>
<Citation>Chang S, Puryear J, Cairney J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11: 113-116.</Citation>
</Reference>
<Reference>
<Citation>Chen Z, Hong X, Zhang H, Wang Y, Li X, Zhu JK, Gong Z. 2005. Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. The Plant Journal 43: 273-283.</Citation>
</Reference>
<Reference>
<Citation>Chen H, Wang JP, Liu H, Li H, Lin YCJ, Shi R, Yang C, Gao J, Zhou C, Li Q et al. 2019. Hierarchical transcription-factor and chromatin binding network for wood formation in Populus trichocarpa. Plant Cell 31: 602-626.</Citation>
</Reference>
<Reference>
<Citation>Felten J, Vahala J, Love J, Gorzsás A, Rüggeberg M, Delhomme N, Leśniewska J, Kangasjärvi J, Hvidsten TR, Mellerowicz EJ et al. 2018. Ethylene signaling induces gelatinous layers with typical features of tension wood in hybrid aspen. New Phytologist 218: 999-1014.</Citation>
</Reference>
<Reference>
<Citation>Fengel D, Wegener G. 2003. Wood-Chemistry, ultrastructure, reactions. Remagen, Germany: Kessel.</Citation>
</Reference>
<Reference>
<Citation>Gerber L, Eliasson M, Trygg J, Moritz T, Sundberg B. 2012. Multivariate curve resolution provides a high-throughput data processing pipeline for pyrolysis-gas chromatography/mass spectrometry. Journal of Analytical and Applied Pyrolysis 95: 95-100.</Citation>
</Reference>
<Reference>
<Citation>Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putham N et al. 2012. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research 40: 1178-1186.</Citation>
</Reference>
<Reference>
<Citation>Gorshkova T, Mokshina N, Chernova T, Ibragimova N, Salnikov V, Mikshina P, Tryfona T, Banasiak A, Immerzeel P, Dupree P et al. 2015. Aspen tension wood fibers contain β-(1-> 4)-galactans and acidic arabinogalactans retained by cellulose microfibrils in gelatinous walls. Plant Physiology 169: 2048-2063.</Citation>
</Reference>
<Reference>
<Citation>Hernández-Blanco C, Feng DX, Hu J, Sánchez-Vallet A, Deslandes L, Llorente F, Berrocal-Lobo M, Keller H, Barlet X, Sánchez-Rodríguez C et al. 2007. Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 19: 890-903.</Citation>
</Reference>
<Reference>
<Citation>Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M. 2003. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. The Plant Journal 34: 733-739.</Citation>
</Reference>
<Reference>
<Citation>Janz D, Lautner S, Wildhagen H, Behnke K, Schnitzler JP, Rennenberg H, Fromm J, Polle A. 2012. Salt stress induces the formation of a novel type of “pressure wood” in two Populus species. New Phytologist 194: 129-141.</Citation>
</Reference>
<Reference>
<Citation>Karimi M, Inzé D, Depicker A. 2002. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science 7: 193-195.</Citation>
</Reference>
<Reference>
<Citation>Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T. 2005. Transcription switches for protoxylem and metaxylem vessel formation. Genes & Development 19: 1855-1860.</Citation>
</Reference>
<Reference>
<Citation>Kudo M, Kidokoro S, Yoshida T, Mizoi J, Todaka D, Fernie AR, Shinozaki K, Yamaguchi-Shinozaki K. 2017. Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnology Journal 15: 458-471.</Citation>
</Reference>
<Reference>
<Citation>Kumar M, Campbell L, Turner S. 2016. Secondary cell walls: biosynthesis and manipulation. Journal of Experimental Botany 67: 515-531.</Citation>
</Reference>
<Reference>
<Citation>Lee DK, Jung H, Jang G, Jeong JS, Kim YS, Ha SH, Do Choi Y, Kim JK. 2016. Overexpression of the OsERF71 Transcription Factor Alters Rice Root Structure and Drought Resistance. Plant Physiology 172: 575-588.</Citation>
</Reference>
<Reference>
<Citation>Legland D, Arganda-Carreras I, Andrey P. 2016. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32: 3532-3534.</Citation>
</Reference>
<Reference>
<Citation>Lin JS, Huang XX, Li Q, Cao Y, Bao Y, Meng XF, Li YJ, Fu C, Hou BK. 2016. UDP-glycosyltransferase 72B1 catalyzes the glucose conjugation of monolignols and is essential for the normal cell wall lignification in Arabidopsis thaliana. The Plant Journal 88: 26-42.</Citation>
</Reference>
<Reference>
<Citation>Liu Y, Wei M, Hou C, Lu T, Liu L, Wei H, Cheng Y, Wei Z. 2017. Functional characterization of Populus PsnSHN2 in coordinated regulation of secondary wall components in tobacco. Scientific Reports 7: 42.</Citation>
</Reference>
<Reference>
<Citation>Love J, Björklund S, Vahala J, Hertzberg M, Kangasjärvi J, Sundberg B. 2009. Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. Proceedings of the National Academy of Sciences, USA 106: 5984-5989.</Citation>
</Reference>
<Reference>
<Citation>Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15: 550.</Citation>
</Reference>
<Reference>
<Citation>Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM et al. 2013. The plant vascular system: evolution, development and functions. Journal of Integrative Plant Biology 55: 294-388.</Citation>
</Reference>
<Reference>
<Citation>Ma R, Xiao Y, Lv Z, Tan H, Chen R, Li Q, Chen J, Wang Y, Yin J, Zhang L et al. 2017. AP2/ERF transcription factor, Ii049, positively regulates lignan biosynthesis in Isatis indigotica through activating salicylic scid Signaling and lignan/lignin pathway genes. Frontiers in Plant Science 8: 1361.</Citation>
</Reference>
<Reference>
<Citation>McLeay RC, Bailey TL. 2010. Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics 11: 165.</Citation>
</Reference>
<Reference>
<Citation>Muñiz L, Minguet EG, Singh SK, Pesquet E, Vera-Sirera F, Moreau-Courtois CL, Carbonell J, Blázquez MA, Tuominen H. 2008. ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development 135: 2573-2582.</Citation>
</Reference>
<Reference>
<Citation>Nilsson O, Aldén T, Sitbon F, Little CHA, Chalupa V, Sandberg G, Olsson O. 1992. Spatial pattern of cauliflower mosaic virus 35S promoter-luciferase expression in transgenic hybrid aspen trees monitored by enzymatic assay and non-destructive imaging. Transgenic Research 1: 209-220.</Citation>
</Reference>
<Reference>
<Citation>Ohashi-Ito K, Iwamoto K, Fukuda H. 2018. LOB DOMAIN-CONTAINING PROTEIN 15 positively regulates expression of VND7, a master regulator of tracheary elements. Plant and Cell Physiology 59: 989-996.</Citation>
</Reference>
<Reference>
<Citation>Ohtani M, Akiyoshi N, Takenaka Y, Sano R, Demura T. 2017. Evolution of plant conducting cells: perspectives from key regulators of vascular cell differentiation. Journal of Experimental Botany 68: 17-26.</Citation>
</Reference>
<Reference>
<Citation>Pitre FE, Lafarguette F, Boyle B, Pavy N, Caron S, Dallaire N, Poulin PL, Ouellet M, Morency MJ, Wiebe N et al. 2010. High nitrogen fertilization and stem leaning have overlapping effects on wood formation in poplar but invoke largely distinct molecular pathways. Tree Physiology 30: 1273-1289.</Citation>
</Reference>
<Reference>
<Citation>Pound MP, French AP, Wells DM, Bennett MJ, Pridmore TP. 2012. CellSeT: novel software to extract and analyze structured networks of plant cells from confocal images. Plant Cell 24: 1353-1361.</Citation>
</Reference>
<Reference>
<Citation>Sato T. 1968. A modified method for lead staining of thin sections. Journal of Electron Microscopy 17: 158-159.</Citation>
</Reference>
<Reference>
<Citation>Schurch NJ, Schofield P, Gierliński M, Cole C, Sherstnev A, Singh V, Wrobel N, Gharbi K, Simpson GG, Owen-Hughes T et al. 2016. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA 22: 839-851.</Citation>
</Reference>
<Reference>
<Citation>Seyfferth C, Wessels B, Jokipii-Lukkari S, Sundberg B, Delhomme N, Felten J, Tuominen H. 2018. Ethylene-related gene expression networks in wood formation. Frontiers in Plant Science 9: 272.</Citation>
</Reference>
<Reference>
<Citation>Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocke D. 2008. Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP). Technical Report National Renewable Energy Laboratory NREL/TP-510-42618. Denver, Colorado: National Renewable Energy Laboratory.</Citation>
</Reference>
<Reference>
<Citation>Smet W, De Rybel B. 2016. Genetic and hormonal control of vascular tissue proliferation. Current Opinion in Plant Biology 29: 50-56.</Citation>
</Reference>
<Reference>
<Citation>Spurr AR. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research 26: 31-43.</Citation>
</Reference>
<Reference>
<Citation>Sun S, Yu JP, Chen F, Zhao TJ, Fang XH, Li YQ, Sui SF. 2008. TINY, a Dehydration-Responsive Element (DRE)-binding protein-like transcription factor connecting the DRE- and ethylene-responsive element-mediated signaling pathways in Arabidopsis. Journal of Biological Chemistry 283: 6261-6271.</Citation>
</Reference>
<Reference>
<Citation>Sundell D, Mannapperuma C, Netotea S, Delhomme N, Lin YC, Sjödin A, Van de Peer Y, Jansson S, Hvidsten TR, Street NR. 2015. The plant genome integrative explorer resource: PlantGenIE.org. New Phytologist 208: 1149-1156.</Citation>
</Reference>
<Reference>
<Citation>Sundell D, Street NR, Kumar M, Mellerowicz EJ, Kucukoglu M, Johnsson C, Kumar V, Mannapperuma C, Delhomme N, Nilsson O et al. 2017. AspWood: high-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula. Plant Cell 29: 1585-1604.</Citation>
</Reference>
<Reference>
<Citation>Sweeley CC, Bentley R, Makita M, Wells WW. 1963. Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances. Journal of the American Chemical Society 85: 2497-2507.</Citation>
</Reference>
<Reference>
<Citation>Taylor-Teeples M, Lin L, de Lucas M, Turco G, Toal TW, Gaudinier A, Young NF, Trabucco GM, Veling MT, Lamothe R et al. 2015. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517: 571-575.</Citation>
</Reference>
<Reference>
<Citation>Trygg J, Wold S. 2002. Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics 16: 119-128.</Citation>
</Reference>
<Reference>
<Citation>Vahala J, Felten J, Love J, Gorzsás A, Gerber L, Lamminmäki A, Kangasjärvi J, Sundberg B. 2013. A genome-wide screen for ethylene-induced ethylene response factors (ERFs) in hybrid aspen stem identifies ERF genes that modify stem growth and wood properties. New Phytologist 200: 511-522.</Citation>
</Reference>
<Reference>
<Citation>Wang Y, Chen Y, Ding L, Zhang J, Wei J, Wang H. 2016. Validation of reference genes for gene expression by Quantitative Real-Time RT-PCR in stem segments spanning primary to secondary growth in Populus tomentosa. PLoS ONE 11: e0157370.</Citation>
</Reference>
<Reference>
<Citation>Xue LJ, Frost CJ, Tsai CJ, Harding SA. 2016. Drought response transcriptomes are altered in poplar with reduced tonoplast sucrose transporter expression. Scientific Reports 6: 33655.</Citation>
</Reference>
<Reference>
<Citation>Yu L, Ma J, Niu Z, Bai X, Lei W, Shao X, Chen N, Zhou F, Wan D. 2017. Tissue-specific transcriptome analysis reveals multiple responses to salt stress in Populus euphratica seedlings. Genes 8: E372.</Citation>
</Reference>
<Reference>
<Citation>Zeng JK, Li X, Xu Q, Chen JY, Yin XR, Ferguson IB, Chen KS. 2015. EjAP2-1, an AP2/ERF gene, is a novel regulator of fruit lignification induced by chilling injury, via interaction with EjMYB transcription factors. Plant Biotechnology Journal 13: 1325-1334.</Citation>
</Reference>
<Reference>
<Citation>Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y. 2009. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. Journal of Experimental Botany 60: 3781-3796.</Citation>
</Reference>
<Reference>
<Citation>Zhao C, Avci U, Grant EH, Haigler CH, Beers EP. 2008. XND1, a member of the NAC domain family in Arabidopsis thaliana, negatively regulates lignocellulose synthesis and programmed cell death in xylem. The Plant Journal 53: 425-436.</Citation>
</Reference>
<Reference>
<Citation>Zhong R, McCarthy RL, Lee C, Ye ZH. 2011. Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar. Plant Physiology 157: 1452-1468.</Citation>
</Reference>
<Reference>
<Citation>Zhong R, Richardson EA, Ye ZH. 2007. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta 225: 1603-1611.</Citation>
</Reference>
<Reference>
<Citation>Zhou ML, Ma JT, Zhao YM, Wei YH, Tang YX, Wu YM. 2012. Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica. Gene 506: 10-17.</Citation>
</Reference>
<Reference>
<Citation>Zhou J, Zhong R, Ye ZH. 2014. Arabidopsis NAC Domain Proteins, VND1 to VND5, are transcriptional regulators of secondary wall biosynthesis in vessels. PLoS ONE 9: e105726.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>Finlande</li>
<li>Suède</li>
</country>
<region>
<li>Brandebourg</li>
<li>Uusimaa</li>
</region>
<settlement>
<li>Helsinki</li>
<li>Potsdam</li>
</settlement>
<orgName>
<li>Université d'Helsinki</li>
</orgName>
</list>
<tree>
<country name="Suède">
<noRegion>
<name sortKey="Wessels, Bernard" sort="Wessels, Bernard" uniqKey="Wessels B" first="Bernard" last="Wessels">Bernard Wessels</name>
</noRegion>
<name sortKey="Antos, Kamil" sort="Antos, Kamil" uniqKey="Antos K" first="Kamil" last="Antos">Kamil Antos</name>
<name sortKey="Delhomme, Nicolas" sort="Delhomme, Nicolas" uniqKey="Delhomme N" first="Nicolas" last="Delhomme">Nicolas Delhomme</name>
<name sortKey="Escamez, Sacha" sort="Escamez, Sacha" uniqKey="Escamez S" first="Sacha" last="Escamez">Sacha Escamez</name>
<name sortKey="Felten, Judith" sort="Felten, Judith" uniqKey="Felten J" first="Judith" last="Felten">Judith Felten</name>
<name sortKey="Seyfferth, Carolin" sort="Seyfferth, Carolin" uniqKey="Seyfferth C" first="Carolin" last="Seyfferth">Carolin Seyfferth</name>
<name sortKey="Tuominen, Hannele" sort="Tuominen, Hannele" uniqKey="Tuominen H" first="Hannele" last="Tuominen">Hannele Tuominen</name>
<name sortKey="Vain, Thomas" sort="Vain, Thomas" uniqKey="Vain T" first="Thomas" last="Vain">Thomas Vain</name>
</country>
<country name="Finlande">
<region name="Uusimaa">
<name sortKey="Vahala, Jorma" sort="Vahala, Jorma" uniqKey="Vahala J" first="Jorma" last="Vahala">Jorma Vahala</name>
</region>
<name sortKey="Kangasj Rvi, Jaakko" sort="Kangasj Rvi, Jaakko" uniqKey="Kangasj Rvi J" first="Jaakko" last="Kangasj Rvi">Jaakko Kangasj Rvi</name>
</country>
<country name="Allemagne">
<region name="Brandebourg">
<name sortKey="Eder, Michaela" sort="Eder, Michaela" uniqKey="Eder M" first="Michaela" last="Eder">Michaela Eder</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B38 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B38 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31125440
   |texte=   An AP2/ERF transcription factor ERF139 coordinates xylem cell expansion and secondary cell wall deposition.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31125440" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020